

Alphonsus crater with 11 pyroclastic vents

Rationale for Landing Sites at Lunar Pyroclastic Deposits

Lisa Gaddis
USGS Astrogeology Science Center

Jan 11, 2018 Lunar Science for Landed Missions Workshop

- Overview of the lunar pyroclastic deposits
- Resource potential
- ISRU, Accessibility and Traversability
- Recommendations for lunar landing sites

Explosively emplaced volcanic deposits

Diffuse boundaries, association with vents

Ancient, by association with lunar maria

- Most basalts erupted during the Late Imbrian (3.6 to 3.8 BY ago)
- Hiesinger et al. (2000) crater counts

Globally distributed

- Observed along margins of lunar maria
- Often associated with floor-fractured craters in faulted regions

Range of sizes (~50,000 to 3 km²):

Alphonsus NE floor vents Kaguya MI color, 20 m/pixel, ~24 km across

- Formed by fire-fountaining (Head & Wilson, 2017)
 - High volatile content (H, H₂O, CO, SO₂), ballistic trajectories
 - Widely distributed, ~thin deposits
 - Abundant juvenile material
 - Quenched glass, crystalline beads (often Hi TiO₂)
- Type Examples
 - Taurus Littrow (Apollo 17)
 - Rima Bode, Sinus Aestuum, Sulpicius Gallus

Rima Bode Regional Pyroclastic Deposit (~6600 km²) Lunar Orbiter IV 109, ~120 km across

Ap 17 glass & crystalline beads (G. Ryder)

Formed by Vulcanian-style eruption

- Intermittent, violent explosion caused by degassing near surface, disruption of a plug as magma rises in a dike (Head & Wilson, 1979)
- **Volatile:** CO-rich gas produced by graphite oxidation (*Fogel & Rutherford, 1995*)
- Mixed juvenile and non-juvenile materials
 - Glass, crystalline basaltic (Hi FeO), fragmented country rock

Type Example

- Alphonsus crater
- Oppenheimer crater

Alphonsus crater, Floor Vent #6 Kaguya Terrain Camera

Bennett et al., 2016

Floor-fractured craters (Jozwiak et al., 2015)

Fractures/faults (Wilhelms, 1987)

Comprised of 'primitive' glass and quenched spheres

- Relatively unprocessed materials from deep within the lunar mantle (~300 to 400 km depths)
 - High Mg/Al, MgO, mg#; lower Al₂O₃ and CaO than mare basalts
- Interior crystals of olivine, spinel, ilmenite needles, etc.
- Uniform grain size, ~40 microns
- Surficial geochemical enrichments in >25 volatile elements
 - e.g., Au, Ag, Cu, Cd, F, S, Z (McCubbin et al., 2015)
- Contain FeO: 16 to 24 wt %
- Variable amounts of TiO₂, related to color

Green: <1 to 5 wt%

Yellow: 5 to 9 wt %

Orange: 9 to 14 wt %

Red-black: >14 wt%

 25 varieties of volcanic glass described by Delano (1986), several others identified since

Ap 17 spheres viewed through a microscope. These have ~8 wt% TiO2. (G. Ryder)

Indigenous Magmatic Water

- The Moon is generally volatile-depleted
- •BUT, recent sample analyses of melt inclusions in glass samples from Ap15, Ap17 found evidence for water and other magmatic volatile species
 - ~30 to 36 ppm of magmatic water in Ap 15 glass beads (Saal et al., 2008)
 - Correlations with other magmatic elements (Chlorine, Fluoride, Sulfur)
 - Concentration of volatiles decreased toward edges, indicating they were not contaminants from Earth
 - 270-1200 ppm H₂O in olivine crystals from Ap17 (Hauri et al., 2011)
 - From a primary lunar magma
 - Source water abundances of 80-440 ppm, comparable to MORBs
 - Summarized by McCubbin et al., 2015; Hauri e al., 2017

Apollo 15 green glass beads about 0.1 mm across (Ap 15 S79-32188)

Mapping of Lunar Water

- Use of Moon Mineralogy Mapper (M3) data, quantitative analysis of strength of the 2.85-micron band (ESPAT), mapping of OH- and/or H_2O -bearing minerals
- Water abundances up to 150 ppm at large pyroclastic deposits, 300 to 400 ppm near vents

ESPAT=effective single particle absorption thickness

ESPAT	,≤0.001 •	0.02	0.03	0.04	0.05	≥0.06
.wt% H ₂ O	<50 ppm	100	150	200 `	250	>300 ppm

Milliken & Li, 2017

Exogenous Volatiles

Solar-wind implanted volatiles (e.g., H, ³He) in mature, Hi-Ti lunar regolith

• Evenly distributed in top 2-3 m, requires heating (300°-900° C) to release (Fegley & Swindle,

1993)

Table 1. Average concentrations of solar wind implanted volatiles in the lunar regolith (Fegley and Swindle 1993), where the quoted errors reflect the range (± one standard deviation) of values found at different sampling locations. The corresponding average masses contained within 1 m³ of regolith (assuming a bulk density of 1660 kg m⁻³; Carrier et al., 1991) are also given.

Volatile	Concentration ppm (µg/g)	Average mass per m ³ of regolith (g)
н	46 ± 16	76
³ He	0.0042 ± 0.003	4 0.007
⁴ He	14.0 ± 11.3	23
C	124 ± 45	206
N	81 ± 37	135
F	70 ± 47	116
CI	30 ± 20	50

Crawford, 2015

Fa & Jin, 2007

- Use of in-situ lunar resources can reduce costs of surface operations
 - H₂O ~ oxygen, drinking water for life support
 - H ~ rocket fuel, reducing agent
 - C, N, S could support lunar agriculture
- Pyroclastic deposits are rich in FeO & TiO₂
 - Extraction of oxygen (>20 methods to choose from; Taylor & Carrier, 1992)
 - Reduction of ilmenite is popular; requires H, energy
- Survey mode requires mobility, accessibility, traversability
 - Supports horizontal assessment of feedstock, estimates of thickness and vertical distribution from vent outward, determination of consistency of materials
- Sample return provides more precise determinations of composition, calibration for remote mapping
 - Ilmenite content
 - Presence of olivine
 - Indigenous water
 - Surface-correlated and solar-wind-implanted volatiles

From Larry Taylor

3-D Printed Moon Base (ESA)

- SKGs to be addressed at lunar pyroclastic deposits
 - Understanding planetary volcanic processes
 - Understanding the Moon's resource potential
 - Understanding the nature & distribution of lunar volatiles

Science questions (examples)

- How old are the lunar pyroclastic deposits?
- Are some eruption styles more likely to be associated with deposits with indigenous water?
- Which deposits contain olivine that can be tied to deep lunar interior origin?
- How thick/uniform are the deposits? Does thickness vary?
 How much material is present?

• What sites?

- "Black spot" locations, high iron, titanium, H, H₂O, surfacecorrelated volatiles, water
 - Taurus-Littrow, Sulpicius Gallus, Rima Bode, Vaporum, etc.
- Humorum
- Aristarchus plateau (Jawin et al., this session)

ESPAT (Milliken & Li, 2017)

3D Sinus Aestuum, Rima Bode (Kaguya MI draped on SLDEM15)

Thanks for listening!

Example Landing Site: Humorum

- Regional extent (1500 km²), smooth-surfaced, Hi-FeO
- Precursor remote characterization
 - High spatial resolution (<100 mpp), hyperspectral imager to map ~3 micron absorption band
 - Characterize abundance, distribution of mafic minerals and indigenous water in detail
 - Use LROC data (~1 mpp) for deposit thickness estimates, boulder& crater hazards
 - Use LOLA data to develop slope maps
- Rover mission (ground contact at multiple sites)
 - Alpha Particle X-ray Spectrometer: Bulk chemistry
 - Neutron Spectrometer: Measure bulk hydrogen, water content at multiple sites
 - Pancam color imager:
 - Multispectral mapping (composition) survey
 - Observe any change(s) with time

Sample return

- Multiple samples of mature soil, quenched glass, crystallized beads
- Analysis of magmatic water (abundance, distribution, etc.)
- Ground-truth for remote measurements
- Feedstock assessment and viability for in-situ extraction

Milliken & Li, 2017